QuasiTheory¶
- QuasiTheory.CPTNDecompose(JF, dim_list)¶
- \[\min\{p_1 + p_2:\mathcal{J}_F = p_1\mathcal{J}_1 - p_2\mathcal{J}_2\}\]
- Parameters:¶
JF – The input matrix to be decomposed.
dim_list – List specifying the dimensions for the decomposition.
- Returns:¶
J1: The choi matrix of the channel \(\mathcal{D}_1\).
J2: The choi matrix of the channel \(\mathcal{D}_2\).
p1: The sampling overhead of J1
p2: The sampling overhead of J2
- Return type:¶
[matrix, matrix, numeric, numeric]
- QuasiTheory.GammaPPT(JN, dim)¶
- \[\gamma_{\operatorname{PPT}}(\mathcal{N}) = \min\{p_+ + p_-:\mathcal{N} = p_+\mathcal{M_+} - p_-\mathcal{M_-}\},\]
- Parameters:¶
JN (
numeric
) – The Choi matrix of the bipartite channel.dim (
numeric
) – The array storing input and output dimensions.
- Returns:¶
The PPT-assisted sampling overhead of bipartite channel.
- Return type:¶
numeric
- Raises:¶
error
– If either input/output dimension does not match, an error is raised.
Note
Jing, M., Zhu, C., & Wang, X. (2024). Circuit Knitting Faces Exponential Sampling Overhead Scaling Bounded by Entanglement Cost. arXiv preprint arXiv:2404.03619.
- QuasiTheory.TCDecompose(JF, dim_list)¶
- \[\min\{a:\mathcal{J}_F = a(\mathcal{J}_1 - \mathcal{J}_2)\}\]
- Parameters:¶
JF – The input matrix to be decomposed.
dim_list – List specifying the dimensions for the decomposition.
- Returns:¶
J1: The choi matrix of the channel \(\mathcal{D}_1\).
J2: The choi matrix of the channel \(\mathcal{D}_2\).
a: The sampling overhead
- Return type:¶
[matrix, matrix, numeric]
- QuasiTheory.VirtualRecovery(rho, dim)¶
- \[R^v_{rec}(\rho_{ABC}) = \log\min\{c_1+c_2:(c_1\mathcal{N}_1 - c_2\mathcal{N}_2)(\rho_{AB}) = \rho_{ABC}, c_{1,2}\geq 0, \mathcal{N}_{1,2}\in\operatorname{CPTP}(B,B\otimes C)\}\]
- Parameters:¶
JN (
numeric
) – The Choi matrix of the bipartite channel.dim (
numeric
) – The array storing input and output dimensions.
- Returns:¶
The virtual recovery of tripartite state.
- Return type:¶
numeric
- Raises:¶
error
– If either input/output dimension does not match, an error is raised.
Note
Chen, Y. A., Zhu, C., He, K., Jing, M., & Wang, X. (2023). Virtual Quantum Markov Chains. arXiv preprint arXiv:2312.02031.