QuasiTheory.ErrorMitigation¶
- QuasiTheory.ErrorMitigation.ProbErrorCancel(Noise_channel)¶
Produce an HPTP map (Choi) to inverse the Noise_channel.
\[\mathcal{N}^{-1} = c_1 \mathcal{D}_1 + c_2 \mathcal{D}_2.\]- Parameters:¶
Noise_channel (
matrix
) – The Choi matrix of the input noise channel.- Returns:¶
c1: The coefficient of the first component.
c2: The coefficient of the second component.
J1: The choi matrix of the quantum channel \(\mathcal{D}_1\).
J2: The choi matrix of the quantum channel \(\mathcal{D}_2\).
- Return type:¶
[numeric, numeric, matrix, matrix]
Note
Temme, Kristan, Sergey Bravyi, and Jay M. Gambetta. Error mitigation for short-depth quantum circuits. Physical review letters 119.18 (2017): 180509.
- QuasiTheory.ErrorMitigation.ProbErrorCancelO(Noise_channel, O)¶
Produce an HPTP map (Choi) to inverse the Noise_channel with respect to observable \(O\).
\[\mathcal{N}^\dagger\circ\mathcal{D}^\dagger(O) = O,\]- Parameters:¶
Noise_channel (
matrix
) – The Choi matrix of the noise channel.O – Observable.
- Returns:¶
c1: The coefficient of the first component.
c2: The coefficient of the second component.
J1: The choi matrix of the quantum channel \(\mathcal{D}_1\).
J2: The choi matrix of the quantum channel \(\mathcal{D}_2\).
- Return type:¶
[numeric, numeric, matrix, matrix]
Note
Zhao, X., Zhao, B., Xia, Z., & Wang, X. (2023). Information recoverability of noisy quantum states. Quantum, 7, 978.
- QuasiTheory.ErrorMitigation.ProbErrorCancelOS(Noise_channel, O)¶
Provide a CPTP map to inverse the Noise_channel with respect to observable \(O\) with the method called observable shift.
\[\mathcal{N}^\dagger\circ\mathcal{D}^\dagger(O) = \frac{1}{f} (O + tI)\]- Parameters:¶
Noise_channel (
matrix
) – The Choi matrix of the noise channel.O (
matrix
) – Observable.
- Returns:¶
overhead: The sampling overhead to retrieve classical information, which equals to \(f\).
t: The shifted distance.
JD: The choi matrix of the target channel to implement.
- Return type:¶
[numeric, numeric, matrix]
Note
Zhao, B., Jing, M., Zhang, L., Zhao, X., Wang, K., & Wang, X. (2023). Retrieving non-linear features from noisy quantum states. arXiv preprint arXiv:2309.11403.