Coherence¶
- Coherence.FlagPoleState(dim, p)¶
Construct a flag-pole state in the computational basis.
\[\ket{\psi} = \sqrt{p}\,\ket{0} + \sum_{i=1}^{d-1} \sqrt{\frac{1-p}{d-1}}\,\ket{i},\]so that \(\rho = \ket{\psi}\!\bra{\psi}\) is a pure state.
- Coherence.RobustnessCoherentChannel(channel, varargin)¶
Compute the robustness of coherence of a quantum channel in Choi form.
\[1 + C_R(\mathcal{N}) = \min_{\mathcal{M}}\{\lambda \,\mid\, \mathcal{N} \le \lambda \mathcal{M}\},\]where \(\mathcal{M}\) ranges over maximally incoherent operations (MIO).
- Parameters:¶
channel (
matrix) – Choi matrix \(J_\mathcal{N} \in \mathbb{C}^{(d_i d_o)\times(d_i d_o)}\) of the input channel \(\mathcal{N}\).varargin (
list) – Channel dimensions, default [d_i, d_o] with d_i = d_o = sqrt{text{size}(J_mathcal{N},1)}.
- Returns:¶
Robustness of coherence \(C_R(\mathcal{N}) \ge 0\) for the input channel.
- Return type:¶
C_R (numeric)
Note
Díaz, M. G., Fang, K., Wang, X., Rosati, M., Skotiniotis, M., Calsamiglia, J., & Winter, A. (2018). Using and reusing coherence to realize quantum processes. Quantum, 2, 100.
- Coherence.RobustnessCoherentState(rho)¶
Compute the robustness of coherence of a quantum state \(\rho\).
\[1 + C_R(\rho) = \min_{\sigma}\{\lambda \,\mid\, \rho \le \lambda \sigma\},\]where \(\sigma\) is an incoherent (diagonal) state in the reference basis.
- Parameters:¶
rho (
matrix) – Density matrix \(\rho \in \mathbb{C}^{d\times d}\) (positive semidefinite, \(\mathrm{Tr}\,\rho=1\)).- Returns:¶
Robustness of coherence \(C_R(\rho) \ge 0\).
- Return type:¶
C_R (numeric)
Note
Napoli, C., Bromley, T. R., Cianciaruso, M., Piani, M., Johnston, N., & Adesso, G. (2016). Robustness of coherence: an operational and observable measure of quantum coherence. Physical Review Letters, 116(15), 150502.
- Coherence.SimulateCoherentChannel(target_channel, resource_state, free_op, varargin)¶
Find the optimal free operation \(\mathcal{M}\) that minimizes the diamond-norm distance between the simulated channel \(\mathcal{M}(\omega \otimes \cdot)\) and the target channel \(\mathcal{N}\).
\[\min_{\mathcal{M}}\; \bigl\| \mathcal{M}(\omega \otimes \cdot) - \mathcal{N} \bigr\|_\diamond\]where \(\omega\) is the provided resource state.
- Parameters:¶
target_channel (
matrix) – Choi matrix \(J_\mathcal{N} \in \mathbb{C}^{(d_i d_o)\times(d_i d_o)}\) of the target channel \(\mathcal{N}\).resource_state (
matrix) – Density matrix \(\omega \in \mathbb{C}^{d_r\times d_r}\) of the resource state.free_op (
numeric) – Choice of free operation \(\mathcal{M}\); 0 for MIO, 1 for DIO.varargin (
list) – Channel dimensions, default [d_i, d_o] with d_i = d_o = sqrt{text{size}(J_mathcal{N},1)}.
- Returns:¶
Diamond-norm distance between the simulated channel and the target channel.
- Return type:¶
distance (numeric)
Note
Díaz, M. G., Fang, K., Wang, X., Rosati, M., Skotiniotis, M., Calsamiglia, J., & Winter, A. (2018). Using and reusing coherence to realize quantum processes. Quantum, 2, 100.
- Coherence.SimulateCoherentChannelProb(target_channel, resource_state, free_op, error_tolerance, varargin)¶
Find the maximal success probability \(p\) to simulate the target channel using free operations \(\mathcal{M}\) and a resource state \(\omega\), up to an allowed diamond-norm error \(\epsilon\).
\[\max_{\mathcal{M}} \left\{ p \;\middle|\; \mathcal{M}(\omega \otimes \cdot) = p\,\mathcal{L}(\cdot) + (1-p)\,\mathcal{R}(\cdot),\; \|\mathcal{L} - \mathcal{N}\|_\diamond \le \epsilon \right\}\]where \(\mathcal{N}\) is the target channel, \(\mathcal{L}\) is the implemented channel, and \(\mathcal{R}\) is an arbitrary CPTP “rubbish” channel.
- Parameters:¶
target_channel (
matrix) – Choi matrix \(J_\mathcal{N} \in \mathbb{C}^{(d_i d_o)\times(d_i d_o)}\) of the target channel \(\mathcal{N}\).resource_state (
matrix) – Density matrix \(\omega \in \mathbb{C}^{d_r\times d_r}\) of the given resource state.free_op (
numeric) – Choice of free operation \(\mathcal{M}\); 0 for MIO, 1 for DIO.error_tolerance (
numeric) – Allowed error \(\epsilon \ge 0\) measured in diamond norm.varargin (
list) – Channel dimensions, default [d_i, d_o] with d_i = d_o = sqrt{text{size}(J_mathcal{N},1)}.
- Returns:¶
Maximal success probability \(p \in [0,1]\) for the simulation.
- Return type:¶
probability (numeric)
Note
Zhao, B., Ito, K., & Fujii, K. (2024). Probabilistic channel simulation using coherence. arXiv preprint arXiv:2404.06775.