Coherence¶
- Coherence.FlagPoleState(dim, p)¶
Provide a flag pole state
\[\ket{\psi} = \sqrt{p} \ket{0} + \sum_{i=1}^{d-1} \sqrt{\frac{1-p}{d-1}}\ket{i}\]
- Coherence.RobustnessCoherentChannel(channel, varargin)¶
Provide the robustness of a coherent channel.
\[1 + C_R(\mathcal{N}) = \min_{\mathcal{M}}\{\lambda | \mathcal{N} \le \lambda \mathcal{M}\},\]where \(\mathcal{M}\) is a maximally incoherent operation (MIO).
- Parameters:¶
channel (
matrix
) – The Choi matrix of the input channel \(\mathcal{N}\).varargin (
list
) – Dimension of the given channel, default to [d_i,d_o], with d_i=d_o.
- Returns:¶
The robustness of the input channel.
- Return type:¶
C_R (numeric)
Note
Díaz, M. G., Fang, K., Wang, X., Rosati, M., Skotiniotis, M., Calsamiglia, J., & Winter, A. (2018). Using and reusing coherence to realize quantum processes. Quantum, 2, 100.
- Coherence.RobustnessCoherentState(rho)¶
Provide the robustness of a coherent state.
\[1 + C_R(\rho) = \min_{\sigma}\{\lambda | \rho \le \lambda \sigma\},\]where \(\sigma\) is the incoherent state.
- Parameters:¶
rho (
matrix
) – The density matrix of quantum state.- Returns:¶
The robustness of the input state.
- Return type:¶
C_R (numeric)
Note
Napoli, C., Bromley, T. R., Cianciaruso, M., Piani, M., Johnston, N., & Adesso, G. (2016). Robustness of coherence: an operational and observable measure of quantum coherence. Physical review letters, 116(15), 150502.
- Coherence.SimulateCoherentChannel(target_channel, resource_state, free_op, varargin)¶
Find the optimal free operation \(\mathcal{M}\) to minimize diamond norm between the simulated channel \(\mathcal{M}(\omega\otimes\cdot)\) and the target channel \(\mathcal{N}\)
\[\| \mathcal{M}(\omega \otimes \cdot) - \mathcal{N}\|_\diamond,\]where \(\omega\) is the given resource state.
- Parameters:¶
target_channel (
matrix
) – The Choi matrix of the input channel \(\mathcal{N}\).reousrce_state (
matrix
) – The density matrix of the given resource state \(\omega\).free_op (
numeric
) – The choice of free operation \(\mathcal{M}\), we can choose 0 (MIO) or 1 (DIO).varargin (
list
) – Dimension of the given channel, default to [d_i,d_o], with d_i=d_o.
- Returns:¶
The diamond norm between the simulated channel and the target channel.
- Return type:¶
distance (numeric)
Note
Díaz, M. G., Fang, K., Wang, X., Rosati, M., Skotiniotis, M., Calsamiglia, J., & Winter, A. (2018). Using and reusing coherence to realize quantum processes. Quantum, 2, 100.
- Coherence.SimulateCoherentChannelProb(target_channel, resource_state, free_op, error_tolerance, varargin)¶
Find the maximally success probability \(p\) to simulate the target channel simulation with free operations \(\mathcal{M}\) and resource state \(\omega\) up to error tolerance \(\epsilon\).
\[\max_{\mathcal{M}} \{p| \mathcal{M}(\sigma\otimes\cdot)=p\mathcal{L}(\cdot) + (1-p)\mathcal{R}(\cdot), \|\mathcal{L} - \mathcal{N}\|\le \epsilon\}\]where \(\mathcal{R}\) is a rubbish channel.
- Parameters:¶
target_channel (
matrix
) – The Choi matrix of the input channel \(\mathcal{N}\).reousrce_state (
matrix
) – The density matrix of the given resource state \(\omega\).free_op (
numeric
) – The choice of free operation \(\mathcal{M}\), we can choose 0 (MIO) or 1 (DIO).error_tolerance (
numeric
) – The maximal simulation error allowed.varargin (
list
) – Dimension of the given channel, default to [d_i,d_o], with d_i=d_o.
- Returns:¶
The maximally success probability of channel simulation.
- Return type:¶
probability (numeric)
Note
Zhao, B., Ito, K., & Fujii, K. (2024). Probabilistic channel simulation using coherence. arXiv preprint arXiv:2404.06775.