quairkit.database.representation¶
Representations of channels
-
quairkit.database.representation.bit_flip_kraus(prob, dtype=
None
)¶ Kraus representation of a bit flip channel with form
\[E_0 = \sqrt{1-p} I, E_1 = \sqrt{p} X.\]
-
quairkit.database.representation.phase_flip_kraus(prob, dtype=
None
)¶ Kraus representation of a phase flip channel with form
\[E_0 = \sqrt{1 - p} I, E_1 = \sqrt{p} Z.\]
-
quairkit.database.representation.bit_phase_flip_kraus(prob, dtype=
None
)¶ Kraus representation of a bit-phase flip channel with form
\[E_0 = \sqrt{1 - p} I, E_1 = \sqrt{p} Y.\]
-
quairkit.database.representation.amplitude_damping_kraus(gamma, dtype=
None
)¶ Kraus representation of an amplitude damping channel with form
\[\begin{split}E_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix}, E_1 = \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix}.\end{split}\]
-
quairkit.database.representation.generalized_amplitude_damping_kraus(gamma, prob, dtype=
None
)¶ Kraus representation of a generalized amplitude damping channel with form
\[\begin{split}E_0 = \sqrt{p} \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix}, E_1 = \sqrt{p} \begin{bmatrix} 0 & \sqrt{\gamma} \\ 0 & 0 \end{bmatrix},\\ E_2 = \sqrt{1-p} \begin{bmatrix} \sqrt{1-\gamma} & 0 \\ 0 & 1 \end{bmatrix}, E_3 = \sqrt{1-p} \begin{bmatrix} 0 & 0 \\ \sqrt{\gamma} & 0 \end{bmatrix}.\end{split}\]
-
quairkit.database.representation.phase_damping_kraus(gamma, dtype=
None
)¶ Kraus representation of a phase damping channel with form
\[\begin{split}E_0 = \begin{bmatrix} 1 & 0 \\ 0 & \sqrt{1-\gamma} \end{bmatrix}, E_1 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{\gamma} \end{bmatrix}.\end{split}\]
-
quairkit.database.representation.depolarizing_kraus(prob, dtype=
None
)¶ Kraus representation of a depolarizing channel with form
\[E_0 = \sqrt{1-3p/4} I, E_1 = \sqrt{p/4} X, E_2 = \sqrt{p/4} Y, E_3 = \sqrt{p/4} Z.\]
-
quairkit.database.representation.generalized_depolarizing_kraus(prob, num_qubits, dtype=
None
)¶ Kraus representation of a generalized depolarizing channel with form
\[E_0 = \sqrt{1-(D - 1)p/D} I, \text{ where } D = 4^n, E_k = \sqrt{p/D} \sigma_k, \text{ for } 0 < k < D.\]
-
quairkit.database.representation.pauli_kraus(prob, dtype=
None
)¶ Kraus representation of a pauli channel
-
quairkit.database.representation.reset_kraus(prob, dtype=
None
)¶ Kraus representation of a reset channel with form
\[\begin{split}E_0 = \begin{bmatrix} \sqrt{p} & 0 \\ 0 & 0 \end{bmatrix}, E_1 = \begin{bmatrix} 0 & \sqrt{p} \\ 0 & 0 \end{bmatrix},\\ E_2 = \begin{bmatrix} 0 & 0 \\ \sqrt{q} & 0 \end{bmatrix}, E_3 = \begin{bmatrix} 0 & 0 \\ 0 & \sqrt{q} \end{bmatrix},\\ E_4 = \sqrt{1-p-q} I.\end{split}\]