quairkit.circuit

The source file of the Circuit class.

class quairkit.circuit.Circuit(num_systems=None, system_dim=2)

Quantum circuit.

Parameters:
num_systems : int | None

number of systems in the circuit. Defaults to None. Alias of num_qubits.

system_dim : List[int] | int | None

dimension of systems of this circuit. Can be a list of system dimensions or an int representing the dimension of all systems. Defaults to be qubit case.

Note

when the number of system is unknown and system_dim is an int, the circuit is a dynamic quantum circuit.

property num_qubits : int

Number of qubits.

property num_qutrits : int

Number of qutrits.

property isdynamic : bool

Whether the circuit is dynamic

property num_systems : int

Number of systems.

property system_dim : list[int] | int

Dimension of systems.

unitary_matrix()

Get the unitary matrix form of the circuit.

Returns:

Unitary matrix form of the circuit.

Return type:

Tensor

property gate_history : list[dict[str, str | list[int] | Tensor]]

List of gates information of circuit

Returns:

history of quantum gates of circuit

property depth : int

Depth of gate sequences.

Returns:

depth of this circuit

Note

The measurement is omitted, and all gates are assumed to have depth 1. See Niel’s answer in the [StackExchange](https://quantumcomputing.stackexchange.com/a/5772).

property system_history : list[list[tuple[dict[str, str | list[int] | Tensor], int]]]

gate information on each system

Returns:

list of gate history on each system

Note

The entry system_history[i][j][0/1] returns the gate information / gate index of the j-th gate applied on the i-th system.

plot(save_path=None, dpi=100, show=True, output=False, scale=1.0, tex=False)

display the circuit using matplotlib

Parameters:
save_path : str | None

the save path of image

dpi : int | None

dots per inches, here is resolution ratio

show : bool | None

whether execute plt.show()

output : bool | None

whether return the matplotlib.figure.Figure instance

scale : float | None

scale coefficient of figure, default to 1.0

tex : bool | None

a bool flag which controls latex fonts of gate display, default to False.

Returns:

a matplotlib.figure.Figure instance or None depends on output

Return type:

None | Figure

Note

Using plt.show() may cause a distortion, but it will not happen in the figure saved. If the depth is too long, there will be some patches unable to display. Setting tex = True requires that you have TeX and the other dependencies properly installed on your system. See https://matplotlib.org/stable/gallery/text_labels_and_annotations/tex_demo.html for more details.

extend(cir)

extend for quantum circuit

Parameters:
cir : Circuit | OperatorList

a Circuit or a OperatorList

Returns:

concatenation of two quantum circuits

Return type:

None

forward(state=None)

forward the input

Parameters:
state : State | None

initial state

Returns:

output quantum state

Return type:

State

h(qubits_idx='full')

Add single-qubit Hadamard gates.

The matrix form of such a gate is:

\[\begin{split}H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1&1\\ 1&-1 \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

s(qubits_idx='full')

Add single-qubit S gates.

The matrix form of such a gate is:

\[\begin{split}S = \begin{bmatrix} 1&0\\ 0&i \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

sdg(qubits_idx='full')

Add single-qubit S dagger (S inverse) gates.

The matrix form of such a gate is:

\[\begin{split}S^\dagger = \begin{bmatrix} 1&0\\ 0&-i \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to 'full'.

t(qubits_idx='full')

Add single-qubit T gates.

The matrix form of such a gate is:

\[\begin{split}T = \begin{bmatrix} 1&0\\ 0&e^\frac{i\pi}{4} \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

tdg(qubits_idx='full')

Add single-qubit T dagger (T inverse) gates.

The matrix form of such a gate is:

\[\begin{split}T^\dagger = \begin{bmatrix} 1&0\\ 0&e^{-\frac{i\pi}{4}} \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to 'full'.

x(qubits_idx='full')

Add single-qubit X gates.

The matrix form of such a gate is:

\[\begin{split}X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

y(qubits_idx='full')

Add single-qubit Y gates.

The matrix form of such a gate is:

\[\begin{split}Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

z(qubits_idx='full')

Add single-qubit Z gates.

The matrix form of such a gate is:

\[\begin{split}Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

p(qubits_idx='full', param=None, param_sharing=False)

Add single-qubit P gates.

The matrix form of such a gate is:

\[\begin{split}P(\theta) = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

rx(qubits_idx='full', param=None, param_sharing=False)

Add single-qubit rotation gates about the x-axis.

The matrix form of such a gate is:

\[\begin{split}R_X(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

ry(qubits_idx='full', param=None, param_sharing=False)

Add single-qubit rotation gates about the y-axis.

The matrix form of such a gate is:

\[\begin{split}R_Y(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

rz(qubits_idx='full', param=None, param_sharing=False)

Add single-qubit rotation gates about the z-axis.

The matrix form of such a gate is:

\[\begin{split}R_Z(\theta) = \begin{bmatrix} e^{-i\frac{\theta}{2}} & 0 \\ 0 & e^{i\frac{\theta}{2}} \end{bmatrix}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

u3(qubits_idx='full', param=None, param_sharing=False)

Add single-qubit rotation gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} U_3(\theta, \phi, \lambda) = \begin{bmatrix} \cos\frac\theta2&-e^{i\lambda}\sin\frac\theta2\\ e^{i\phi}\sin\frac\theta2&e^{i(\phi+\lambda)}\cos\frac\theta2 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the gates are applied. Defaults to ‘full’.

param : Tensor | Iterable[float] | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

cnot(qubits_idx='cycle')

Add CNOT gates.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CNOT} &=|0\rangle \langle 0|\otimes I + |1 \rangle \langle 1|\otimes X\\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

cy(qubits_idx='cycle')

Add controlled Y gates.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CY} &=|0\rangle \langle 0|\otimes I + |1 \rangle \langle 1|\otimes Y\\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1j \\ 0 & 0 & 1j & 0 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

cz(qubits_idx='linear')

Add controlled Z gates.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CZ} &=|0\rangle \langle 0|\otimes I + |1 \rangle \langle 1|\otimes Z\\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

swap(qubits_idx='linear')

Add SWAP gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{SWAP} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

cp(qubits_idx='cycle', param=None, param_sharing=False)

Add controlled P gates.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CP}(\theta) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & e^{i\theta} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

crx(qubits_idx='cycle', param=None, param_sharing=False)

Add controlled rotation gates about the x-axis.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CR_X} &=|0\rangle \langle 0|\otimes I + |1 \rangle \langle 1|\otimes R_X\\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} \\ 0 & 0 & -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

cry(qubits_idx='cycle', param=None, param_sharing=False)

Add controlled rotation gates about the y-axis.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CR_Y} &=|0\rangle \langle 0|\otimes I + |1 \rangle \langle 1|\otimes R_Y\\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ 0 & 0 & \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

crz(qubits_idx='cycle', param=None, param_sharing=False)

Add controlled rotation gates about the z-axis.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CR_Z} &= |0\rangle \langle 0|\otimes I + |1 \rangle \langle 1|\otimes R_Z\\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & e^{-i\frac{\theta}{2}} & 0 \\ 0 & 0 & 0 & e^{i\frac{\theta}{2}} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

cu(qubits_idx='cycle', param=None, param_sharing=False)

Add controlled single-qubit rotation gates.

For a 2-qubit quantum circuit, when qubits_idx is [0, 1], the matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CU} &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\frac\theta2 &-e^{i\lambda}\sin\frac\theta2 \\ 0 & 0 & e^{i\phi}\sin\frac\theta2&e^{i(\phi+\lambda)}\cos\frac\theta2 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

rxx(qubits_idx='linear', param=None, param_sharing=False)

Add RXX gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{R_{XX}}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & 0 & 0 & -i\sin\frac{\theta}{2} \\ 0 & \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} & 0 \\ 0 & -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} & 0 \\ -i\sin\frac{\theta}{2} & 0 & 0 & \cos\frac{\theta}{2} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

ryy(qubits_idx='linear', param=None, param_sharing=False)

Add RYY gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{R_{YY}}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & 0 & 0 & i\sin\frac{\theta}{2} \\ 0 & \cos\frac{\theta}{2} & -i\sin\frac{\theta}{2} & 0 \\ 0 & -i\sin\frac{\theta}{2} & \cos\frac{\theta}{2} & 0 \\ i\sin\frac{\theta}{2} & 0 & 0 & cos\frac{\theta}{2} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

rzz(qubits_idx='linear', param=None, param_sharing=False)

Add RZZ gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{R_{ZZ}}(\theta) = \begin{bmatrix} e^{-i\frac{\theta}{2}} & 0 & 0 & 0 \\ 0 & e^{i\frac{\theta}{2}} & 0 & 0 \\ 0 & 0 & e^{i\frac{\theta}{2}} & 0 \\ 0 & 0 & 0 & e^{-i\frac{\theta}{2}} \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

ms(qubits_idx='cycle')

Add Mølmer-Sørensen (MS) gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{MS} = \mathit{R_{XX}}(-\frac{\pi}{2}) = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & i \\ 0 & 1 & i & 0 \\ 0 & i & 1 & 0 \\ i & 0 & 0 & 1 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

cswap(qubits_idx='cycle')

Add CSWAP (Fredkin) gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CSWAP} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

ccx(qubits_idx='cycle')

Add CCX (Toffoli) gates.

The matrix form of such a gate is:

\[\begin{split}\begin{align} \mathit{CCX} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \end{align}\end{split}\]
Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘cycle’.

universal_two_qubits(qubits_idx='linear', param=None, param_sharing=False)

Add universal two-qubit gates. One of such a gate requires 15 parameters.

Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

universal_three_qubits(qubits_idx='linear', param=None, param_sharing=False)

Add universal three-qubit gates. One of such a gate requires 81 parameters.

Parameters:
qubits_idx : Iterable[int] | str

Indices of the qubits on which the gates are applied. Defaults to ‘linear’.

param : Tensor | float | None

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

Raises:

ValueError – The param must be torch.Tensor or float.

universal_qudits(system_idx, param=None, param_sharing=False)

Add universal qudit gates. One of such a gate requires \(d^2 - 1\) parameters, where \(d\) is the gate dimension.

Parameters:
system_idx : List[int]

Indices of the systems on which the gates are applied. Defaults to ‘linear’.

param : Tensor | float

Parameters of the gates. Defaults to None.

param_sharing : bool

Whether gates in the same layer share a parameter. Defaults to False.

Raises:

ValueError – The param must be torch.Tensor or float.

oracle(oracle, system_idx, gate_name='O', latex_name=None, plot_width=None)

Add an oracle gate.

Parameters:
oracle : Tensor

Unitary oracle to be implemented.

system_idx : List[int] | int

Indices of the systems on which the gates are applied.

gate_name : str | None

name of this oracle.

latex_name : str | None

latex name of this oracle, default to be the gate name.

plot_width : float | None

width of this gate in circuit plot, default to be proportional with the gate name.

control_oracle(oracle, system_idx, proj=None, gate_name='O', latex_name=None, plot_width=None)

Add a controlled oracle gate.

Parameters:
oracle : Tensor

Unitary oracle to be implemented.

system_idx : List[List[int] | int]

Indices of the systems on which the gates are applied. The first element in the list is the control system, defaulting to the $|d-1rangle langle d-1|$ state as the control qubit, while the remaining elements represent the oracle system.

proj : Tensor

Projector matrix for the control qubit. Defaults to None

gate_name : str | None

name of this oracle.

latex_name : str | None

latex name of this oracle, default to be the gate name.

plot_width : float | None

width of this gate in circuit plot, default to be proportional with the gate name.

param_oracle(generator, num_acted_param, system_idx, param=None, gate_name='P', latex_name=None, plot_width=None)

Add a parameterized oracle gate.

Parameters:
generator : Callable[[Tensor], Tensor]

function that generates the oracle.

num_acted_param : int

the number of parameters required for a single operation.

system_idx : List[int] | int

indices of the system on which this gate acts on.

param : Tensor | float

input parameters of quantum parameterized gates. Defaults to None i.e. randomized.

gate_name : str | None

name of this oracle.

latex_name : str | None

latex name of this oracle, default to be the gate name.

plot_width : float | None

width of this gate in circuit plot, default to be proportional with the gate name.

measure(system_idx=None, post_selection=None, if_print=False, measure_basis=None)
Parameters:
system_idx : Iterable[int] | int | str

list of systems to be measured. Defaults to all qubits.

post_selection : int | str

the post selection result after measurement. Defaults to None meaning preserving all measurement outcomes.

if_print : bool

whether print the information about the collapsed state. Defaults to False.

measure_basis : Tensor | None

The basis of the measurement. The quantum state will collapse to the corresponding eigenstate.

Note

When desired_result is None, collapse is equivalent to mid-circuit measurement.

superposition_layer(qubits_idx=None)

Add layers of Hadamard gates.

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to all qubits.

weak_superposition_layer(qubits_idx=None)

Add layers of Ry gates with a rotation angle \(\pi/4\).

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to all qubits.

linear_entangled_layer(qubits_idx=None, depth=1)

Add linear entangled layers consisting of Ry gates, Rz gates, and CNOT gates.

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to all qubits.

depth : int

Number of layers. Defaults to 1.

real_entangled_layer(qubits_idx=None, depth=1)

Add strongly entangled layers consisting of Ry gates and CNOT gates.

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to None.

depth : int

Number of layers. Defaults to 1.

complex_entangled_layer(qubits_idx=None, depth=1)

Add strongly entangled layers consisting of single-qubit rotation gates and CNOT gates.

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to None.

depth : int

Number of layers. Defaults to 1.

real_block_layer(qubits_idx=None, depth=1)

Add weakly entangled layers consisting of Ry gates and CNOT gates.

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to None.

depth : int

Number of layers. Defaults to 1.

complex_block_layer(qubits_idx=None, depth=1)

Add weakly entangled layers consisting of single-qubit rotation gates and CNOT gates.

Parameters:
qubits_idx : Iterable[int] | None

Indices of the qubits on which the gates are applied. Defaults to None.

depth : int

Number of layers. Defaults to 1.

bit_flip(prob, qubits_idx='full')

Add bit flip channels.

Parameters:
prob : Tensor | float

Probability of a bit flip.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

phase_flip(prob, qubits_idx='full')

Add phase flip channels.

Parameters:
prob : Tensor | float

Probability of a phase flip.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

bit_phase_flip(prob, qubits_idx='full')

Add bit phase flip channels.

Parameters:
prob : Tensor | float

Probability of a bit phase flip.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

amplitude_damping(gamma, qubits_idx='full')

Add amplitude damping channels.

Parameters:
gamma : Tensor | float

Damping probability.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

generalized_amplitude_damping(gamma, prob, qubits_idx='full')

Add generalized amplitude damping channels.

Parameters:
gamma : Tensor | float

Damping probability. Its value should be in the range \([0, 1]\).

prob : Tensor | float

Excitation probability. Its value should be in the range \([0, 1]\).

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

phase_damping(gamma, qubits_idx='full')

Add phase damping channels.

Parameters:
gamma : Tensor | float

Parameter of the phase damping channel.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

depolarizing(prob, qubits_idx='full')

Add depolarizing channels.

Parameters:
prob : Tensor | float

Parameter of the depolarizing channel.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

generalized_depolarizing(prob, qubits_idx)

Add a general depolarizing channel.

Parameters:
prob : Tensor | float

Probabilities corresponding to the Pauli basis.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channel is applied.

pauli_channel(prob, qubits_idx='full')

Add Pauli channels.

Parameters:
prob : Tensor | float

Probabilities corresponding to the Pauli X, Y, and Z operators.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

reset_channel(prob, qubits_idx='full')

Add reset channels.

Parameters:
prob : Tensor | float

Probabilities of resetting to \(|0\rangle\) and to \(|1\rangle\).

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

thermal_relaxation(const_t, exec_time, qubits_idx='full')

Add thermal relaxation channels.

Parameters:
const_t : Tensor | Iterable[float]

\(T_1\) and \(T_2\) relaxation time in microseconds.

exec_time : Tensor | float

Quantum gate execution time in the process of relaxation in nanoseconds.

qubits_idx : Iterable[int] | int | str

Indices of the qubits on which the channels are applied. Defaults to ‘full’.

choi_channel(choi_repr, system_idx)

Add custom channels in the Choi representation.

Parameters:
choi_repr : Iterable[Tensor]

Choi representation of this channel.

system_idx : Iterable[Iterable[int]] | Iterable[int] | int

Indices of the systems on which the channels are applied.

kraus_channel(kraus_oper, system_idx)

Add custom channels in the Kraus representation.

Parameters:
kraus_oper : Iterable[Tensor]

Kraus representation of this channel.

system_idx : Iterable[Iterable[int]] | Iterable[int] | int

Indices of the systems on which the channels are applied.

stinespring_channel(stinespring_repr, system_idx)

Add custom channels in the Stinespring representation.

Parameters:
stinespring_repr : Iterable[Tensor]

Stinespring representation of this channel.

system_idx : Iterable[Iterable[int]] | Iterable[int] | int

Indices of the systems on which the channels are applied.

locc(local_unitary, system_idx)

Add a one-way local operation and classical communication (LOCC) protocol comprised of unitary operations.

Parameters:
measure_idx

Indices of the measured systems.

system_idx : List[List[int] | int]

Indices of the systems on which the protocol is applied. The first element represents the measure system(s) and the remaining elements represent the local system(s).